$$
\begin{aligned}
& N-96-01 \\
& I I-\times 1-185
\end{aligned}
$$

RAILROAD NOISE EXPOSURE MODEL (RYNEM) VOLUME 2

 RYNEM USER MANUAL

 RYNEM USER MANUAL}

January 1982

U.S. Environmental Protection Agency Washington, D.C. 20460

RAILROAD NOISE EXPOSURE MODEL (RYNDM)VOLUME 2
RYNEM USER MANUAL
January 1982
Office of Noise Abatement and Control
U.S. Environmental Protection Agency Washington, D.C. 20460This report has been approved for general availability.The contents of this report reflect the views of thecontractor, who is responsible for the facts and theaccuracy of the data presented herein, and do notnecessarily reflect the official views or policy ofEPA. This report does not constitute a standard,specification, or regulation. Permission is grantedto reproduce this material without further clearance.

TABLE OF CONTENTS

Page
0.0 PRELIMINARIES 1
0.1 Scope of These Manuals 1
0.2 General Introduction to the Model 5
1.0 INTRODUCTION 7
2.0 GAINING ACCESS TO THE NCC IBM WYLBUR SYSTEM 9
3.0 RUNNING THE RYNEM PROGRAM 13
3.1 Editing the RYNEM Frogram 13
3.2 Making Runs 14
4.0 INPUTTING THE DATA 19
4.1 Data Format and Structure 19
4.2 Format of the Specific Data Cards 25
4.2.1 YARD Data Card 25
4.2.2 AREA Data Card 26
4.2.3 SOURCE Data Card 28
4.3 Constraints and Limitations 31
5.0 INTERPRETING THE OUTPUT 33
5.1 Structure and Level of Detail 33
5.2 Output Data for Each Yard 35
5.3 Totals of Output Data for all Yards 37
APPENDIX A 51
0 APPENDIX B 61
LIST OF FIGURES
I An example of logging on 11
2 A sample production job run 16
3 Input data structure 24
4 Geometry of area 27
5 Yard data listing for sample run 30
6 Structure of output listing 34
7 Example use of some commands 58
LIST OF TABLES
1 Control Input Data 22
2 Example Railyara Data Output 39
3 Total of Output Data for all Yarđis 46

0.0 PRELIMINARIES

0.1 Scope of These Manuals

The present set of manuais, volumes l-3, is meant to describe the Railyard Noise Exposure Model (RYNEM) in some detail. In the following, a brief description of each volume and its intended audience is presented.

Volume 1: General Description of the Model

This volume presents an overview of the model. The basic philosophy of the model is discussed and the relevant equations used in the computations are presented. This volume is written for those who need to know what the model is like. It does not go into detail of how each computation is done in the program, nor does it teach the user how to run the model. It presupposes some familiarity with the EPA noise terminology, as is covered by the "EPA Levels" document [1]. The reader is advised to peruse the Railroad Background document [2] for other terminology used without explanation.

Volume 2: User Manual

This volume presents a cookbook approach to the execution of the model. Its intended audience is those who will exercise the model. It assumes familiarity with volune 1 , i.e., the user knows the quantities he inputs, and he knows the quantities printed out. For obvious reasons, the explanations incorporated in volume 1 are not repeated. While it does not presume expertise with the EPA IBM computer system, it does assume the user can follow the instructions

> presented in this volume to the letter. This point cannot be emphasized often enough. Contrary to popular opinion, a computer cannot think. It can only carry out the instructions given it exactly. As far as is known, the present program is bug-free. If an error occurs, the source most likely is in the input data or the job card.) Though the manual presents a short description of relevant commands in the appendix, the user is reminded that EPA changes its computer systems every so often, so that the instructions presented may be obsolete. The user is strongly advised to obtain a copy of the latest computer user guide and learn the necessary commands to make runs.

Volume 3: Programmer Manual

This volume describes all the nuts and bolts in the program code. It is not meant to teach the reader how to run the program. That is the job of volume 2. It assumes the reader has digested the contents of volume 1 . No attempt has been provided to educate the reader as to what Lan or LWP is. The intended audience is the programmer who needs to maintain the program and make changes in the code. A strong knowledge of standard IBM FORTRAN IV language is assumed.

The correct sequence of reading for a rank novice with no knowledge whatsoever of the EPA noise model methodology is as follows:

1. EPA Levels document - in which the terminology is introduced.
2. Railroad Background document - which describes what a railyard is, the noise sources inside, etc.

0.2 General Introduction to the Model

The Railyard Noise Exposure Model (RYNEM) is a computer program designed to quantify the health/welfare impact due to railyard-generated noise on the general population. In this model, a railyard contains two causes of noise sources: stationary and moving. Some examples of stationary sources are master retarders (MR), inert retarders (IR), crane trucks (CT), goat trucks (GT), idiing locomotives (IL), refrigerator cars (RC) and load tests (LT). Moving sources consist of switch engines (SE) and inbound (IB) and outbound (OB) trains. Each of these noise sources generates a noise level which can be measured at the railyard boundary (property line). Together, they combine to produce a higher noise level than each can produce on its own. Taking into account the hours of the day during which the noise sources are used, an averaged noise level, Ldn (for day-night weighting) can be computed at the railyard property line using the standard EPA methodology. Based on this Ldn value the general adverse response level weighted population (LWP), or equivalent number impacted (ENI) can be computed.

So far, this is standard practice of the EPA noise models. Whereas formerly, the EPA noise models would use some kind of "average" parameters to, construct a model of an "average" yard and then scale up the LWP from this "average" yard to the total population of yards for the national impact, RYNEM does the scaling in a slightly different way. RYNEM considers that the LWP for the national population of railyards form a distribution with mean μ and variance 0^{2}. When random samples are taken from this distribution and their mean, $\hat{\mu}$, computed, the Weak Law of Large Numbers implies that the sample mean approaches the true mean of the population when the sample size is large, i.e., the sample mean μ is a good approximation of the true
mean μ. If we scale up the sample mean LWP by the total number of yards in the population, we will obtain a good approximation to the total LWP due to all the yards, when our sample size is large enough. In this sense, RYNEM is a "statistical" model.

An estimate of the error involved in $\hat{\mu}$ can be obtained as follows:

The true variance of the population, σ^{2}, can be approximated by the sample variance:

$$
s^{2}=\sum_{i=1}^{n} \frac{(x i-\hat{\mu})^{2}}{n-1}
$$

where $x i$ are the individual LWP's
n is the sample size.

Let $x i$
iid
$f\left(\mu, \sigma^{2}\right) \quad i=1, \ldots \ldots n$
Then for

$$
\begin{aligned}
z & =\frac{\text { Xit . . tXn }}{n} \\
E(Z) & =\mu \\
\operatorname{var}(2) & =\frac{\operatorname{var}(x i)}{n}=\frac{\sigma^{2}}{n}
\end{aligned}
$$

Thus, the standard error of 2 is $\frac{\sigma}{\sqrt{n}}$ or approximately $\frac{S}{\sqrt{n}}$. Thesefore, the error of the total LWP is approximately $\frac{5 N}{\sqrt{n}}$ where N is the total number of railyards in the population.

1.0 INTRODUCTION

This manual is meant to be a cookbook on running RYNEM. While it does not presuppose much technical knowledge of the EPA computer system, it does assume that the reader has gone through volume 1 , the general description of the model. For that reason, the standard terminology is used throughout without explicit definition. For the same reason, no extra explanation is provided in the input and output sections, as these are adequately covered in volume 1.

An appendix on some relevant commands is included in this volume. It is not meant to be a substitute for the official publication of NCC. It is provided so that those readers who are unwilling to invest the time in learning about the computer system can still make runs. The reader who plans to maintain and modify the program is advised to acquire the following manuals: "NCC User Guide," "NCC WYLBUR Guide." They can be obtained from NCC through your EPA project officer or directly from the computer itself.

The program was written in standard IBM FORTRAN IV language for the EPA IBM $370 / 168$ computer at NCC. In the following, it is assumed that the IBM $370 / 168$ system is the host system and the WYLBUR system is used for file manipulation. As the EPA changes its computerasystems from time to time, it is best to find out what the current system is from your EPA profect officer before proceeding. The programs and the input database reside on the IBM 370/168. Due to anticipated disuse, they will be archived and transferred to tape. For this reason they have not been protected, as it is much easier to dearchive unprotected files. The naming convention used is standard for the WYLBUR system. If the files cannot be found, it is most likely that they have been archived. To dearchive them, the user should contact the NCC user support team for help.

The user is assumed to have access to a computer terminal which can be connected to the NCC IBM system via telephone line. The appropriate telephone numbers to use can be found in "NCC User Guide."

This manual is divided into four parts to be covered in sections 2-5:
2. 0 Gaining Access to the NCC IBM WYLBUR System
3.0 Running the RYNEM Program
4.0 Inputting the Data
5.0 Interpreting the Output

```
    2.0 GAINING ACCESS TO THE NCC IBM WYLBUR SYSTEM
    Accessing the system consists of two steps:
    1. getting through the telecommunications network to
        WYLBUR
    2. logging on to WYLBUR
    Configuration of the computer terminal necessary to gain
access is:
Main power switch: ON
Modem power switch (if separate): ON
Mode: HALF DUPLEX
Baud rate: 300
Terminal mode: LINE
With the configurations of the terminal set as above,
dial the appropriate telephone number (found in "NCC IBM
User Guide"). If the telephone answer is a high frequency
tone, couple the receiver to the modem, making sure that the
position of the receiver is correct. If the telephone is
not answered, the system is probably busy You can try
calling a different number or calling back in a few minutes.
After you have connected the telephone receiver to the modem wait for the correct light to go on.
System prompts: "please type your terminal identifier"
Respond with: A (CR)
System prompts: "please log in"
Respond with: (CTRLH) IBMEPAI;NCC (CR)
CTRLH is achieved by pressing the control key (CTRL) and H
simultaneousiy.
System prompts: "IBM IS ON LINE"
```

$$
-9
$$

Respond with: WYL (CR)
System prompts: "enter LOGON for tso or wylbur terminal type"
Respond with: (CR)
System prompts: "MODEL 37/38 TELETYPE "WYLBUR AT EPA NCC-IBM - - -

 "USERID?"
 You have established contact with the WYLBUR system Anexample of logging on is shown in Figure 1.
The second step is to \log on to WYLBUR.
System prompts: "USERID?"
Respond with: EPAiii (CR)
where EPAiii is your userid ("iii" is 3 letters thatdesignate your userid.
System prompts: "ACCOUNrT?"
Respond with: $x \times x x$ (CR)
where "xxxx" is your account code
System prompts: "PASSWORD?"
Respond with PPPPPPPP (CR)
where "Pppppppp" is your password of 3 to 8 characters.Your userid, account, and password can be obtained fromyour EPA project officer.
System prompts: "SPECIFY GLOBAL FORMAT FOR SAVE COMMANDS "REPLY - DEFAULT, EDIT TSO, CARD OR PRINT "FORMAT?"
Respond with: CARD (CR)
System prompts: "COMMAND?"
You have logged into WYLBUR and can start manipulating thefiles and maje runs.

INTENTIONALLY LEFT BLANK

3.0 RUNNING THE RYNEM PROGRAM

A word about notation used in this manual coneerning interaction with the computer:
(1) The computer system's prompts are always enclosed in double quotes.
(2) User responses are in upper case and underlined. Do not type in the underlines!
(3) Additional comments by the author regarding commands (not to be typed in by the user) are in lower case and enclosed in parentheses.
(4) Required arguments to be entered by the user are in lower case, enclosed in single quotes. Do not type in the quotes!
(5) (CR) means type in a carriage return.
(6) (BREAK) means type the break key.

An example of how this works is as follows
"COMMAND?" RUN UNN (CR)
The computer system prompts "COMMAND?" The user responds with RUN UNN (not underlined when typed in) and hits the carriage return key.

3.1 Editing the RYNEM Program

The RYNEM code and its data base are stored on the NCC WYLBUR system. For the user desiring merely to run the standard RYNEM program with the current data base, the process is straightforward and outlined in Section 3.2

If the user wants to change parameters or alter the code in any way, he/she must access the main code edit the
code, and then run the new version. The "NCC User Guide" and "NCC WYLBUR Guide" contain the necessary explanations of how this can be done.

The following is a list of relevant files:

Filename

CN. EPABRM S2KC.RM80N5

CN. EPABRM.S2KC. RM 80N 3D

Description
Latest version of the source code

Complete data base for RM80N3 (includes all 183 railyards)

Section 40 of this manual describes the data base and its format.
3.2 Making Runs

After logging onto the WYLBUR system the system prompts and user responses are:

COMMAND? SET TERSE (CR) ${ }^{1}$
? JOB BOX 'rrry' (CR)
where 'rrrr' is the user box code. This box code indicates to the system how the user will receive his/her output from the lineprinter. For more information, see "NCC User Guide "

3 EDI FIRST $(C R)^{2}$
${ }^{1}$ See WYLBUR manual for explanation of comments
2EDI FIRST is used only if the user must alter the 'JOB card. For more information see "NCC User Guide " If editing is not needed, the user should type C instead of EDI FIRSI

The user may need to edit the number of lines to be printed, the priority and the computer time requested. Actual output and user edits are shown in Figure 2.

The second ' 10 ' in the $J O B$ card refers to the estimated limit of the total number of lines to be printed in thousands of lines.

If you run RYNEM on output level III (to be explained in the next section), the total number of lines is about 40,000 for the complete data base. Therefore, the second 10 must be changed to a 40 as is done in Figure 2. Other edits shown are:
'LAM' is the programmer name. Insert your own name inside the quotes.

PRTY=1 We want to sun the job in priority 1, the lowest priority level (overnight turnaround). This is the cheapest rate. If you want faster turnaround, you can run up to priority 5.

TIMEX 1 The maximum amount of computer time requested is one minute. This is ample for the complete database of 183 railyards.

The user concludes with a (CR). The system responds with a printout of the line complete with edits and offers the user an opportunity for further edits.

At the completion of the editing, the user need only hit a (CR) and then a $\underset{(C R)}{ }$ in response to the ? prompt, i.e.:

```
        job bo: alam
    ? edi first
        0.001 //EFALAM JOE (S2KC,ALAM,10,10,10),' GENERATEI JOE CARN'
        IITS ? / EFALAM \am',frty=1,time=1!
        0.001 //EFALAM JOE (S2KC,ALAM,10,40,10),'LAM',F'RTY=1,TIME=1
        EIITS ?
    ? 
        1. ? //jablib dd dsm=cri.epabrm.s2ke.1m,disp=shr
        2. ? // enec fan=rynem
        3. ?//go.ft05f001 dd dsn=ch.efabrll.s2ke.rm80ri3d,disp=shr
        4. ? //go,fto&f001 dd sysolut=a
        5. ? ***
:? save enample on usergo card
    -EXAMFLE' ALFEADY EXISTS ON USERBO
iEPLACE? yes
'EXAMFLE' KEFLACED ON USER8O
    ? exa***
    ? ruri urin
    3609 IS YOUR JOB NUMBER.
? losoff clr
    ENI OF SESSION MONNAY 11/17/80 3:14:33 P.M.
    , EPALAM/S2KC OFF WYLRUR 11/17/80 AT 15:14:33, 0.22 WUU
        0.05 CONNECT HRS., 0:00.06 TCE, O PAGE-SECONIIS
        EXCFS: 1 DA, O MT, 2O TEFM, O OTHER, 21 TOTAL
        CHARGES: $0.00 CONNECT, $0.12 WUU, $0.12 TOTAL
```

Figure 2. A sample production job r

EDITS $?$ (CR)
? C (CR)
This puts the system into the COLLECT mode

To run the standard RYNEM program insert the following JCL statements after the JOB card in response to the system prompts:

1. $? / /$ EXEC FTGICLG (CR)
2. ? $/ / /$ FORT. SYSTN DD $D S N=C N$. EPABRM.S2KC. RMBON5,DISP=SHR (CR)
3. ? $/ /$ GO.FTO5F001 DD DSN=CN.EPABRM.S2KC.RM8ON3D,DISP=SHR (CR)
4. ?//GO.FTO6F001 DD SYSOUT=A (CR)
5. ?(BREAK)

This completes creation of the JCL file
(BREAK) appears as *** on the terminal and causes the user to exit from CoLLECT mode.

To execute the program, after the prompt type

COMMAND? RUN UNN (CR)
' $X X X X$ ' IS YOUR 'JOB NUMBER.
'RUN UNN' submits your job in batch mode It will be printed off the 1 ineprinter at NCC when the job has finished execution. How you will receive your printout depends on how you specified your BOX code.

Sometimes you may want to examine your output on line (e.g., when you are debugging your program). Then you can type in

COMMAND? RUN UNN HOLD (CR)
'XXXX' IS YOUR 'JOB NUMBER.

What 'HOLD' does is to store your output in the system after it has been executed so that you can retrieve it. Depending on priority assigned, you may wish to \log off until the job is completed.

To make sure your job has finished, \log on and type

COMMAND? LOC 'XXXX'(CR)
where ' $X X X X$ ' is the number assigned to your job by the system. You know that your job has finished execution when, in response to a LOCATE command, the system responds with
'JOB XXXX EPAIII IN OUTPUT HOLD
You can now FeTCH your output as follows:
COMMAND? FET XXXX CLR(CR)

You can now look at your output by issuing a LIST command.

4.0 INPUTTING THE DATA

4.1 Data Format and Structure

The current database for RYNEM, consisting of 183 out of a total of 3,693 railyards in the United States, is stored in the dataset CN.EPABRM.S2KC.RM80N3D. You may run RYNEM with the current database or some subset of the database (by doing your own editing). For example, you may want to run RYNEM using yards in a certain population density range only, or you may create your own database. If you want to use your own input dataset, substitute your filename for 'CN.EPABRM.S2KC.RM80N3D' in the GO.FTO5F001 DD card.

A copy of the dataset can be obtained by printing it off the lineprinter as follows:
? USE CN.EPABRM.S2KC.RM80N3D CLR (CR)
? L OFF BOX " $\mathrm{Xx} \times \mathrm{x}$ " (CR)

The last command lists the file offline. "xxxx" is your box code for receiving output. Consult the "NCC User Guide" for the appropriate code to use.

In the following, the format listed is of the form mTn
where

```
m}\mathrm{ is the number of times the format is repeated in a
line.
T is the format type (FORTRAN notation)
```

A is character string (i.e., any alphanumeric character and certain special characters)

I is integer (must be right justified)
F is floating point (decimal point must be located properly)
n is the number of columns (or spaces) the data occupies.

For example: 4A4 is 4 strings of alphanumeric data of length at most 4 characters.

354 is 3 numbers in floating point of length at most 4 , with 1 space reserved for the decimal point (i.e., 3 significant digits).

The format of the definition and control input data to RYNEM is shown in Table 1 , and is described below.


```
        LOW UOL HUMF'
        MEIIIUM VOL HUMP
        HIGH VOL HUMF
        LOW VOL FLAT
        MEDIUM VOL FLAT
        HIGH VOL FLAT
        INDUSTRIAL
        SMALL INDUSTRIAL
        55.58.61.64.67.70.73.76.79.82.
        55-58
        58-61
        61-64
        64-67
        67-70
        70-73
        73-76
        76-79
        79-82
        >82
        BL MW
        75 70 65 60 55
        3
```

 -
 Table 1. Control input data
 (if all the residential and commercial areas are so far from the railyard boundary as to be considered to be unaffected by the noise, enter 0 in the number of areas column in the YARD card and go to the next yard). Each residential and commercial area contains one or more noise sources. There is a limit of ten moving sources and ten fixed sources per area, and the moving sources are always to be input before the fixed sources. Thus for one yard, the arrangement of the data is as follows:

YARD card

AREA Card 1
MOVING SOURCE card 1
MOVING SOURCE card 2
:
MOVING SOURCE card i
FIXED SOURCE card \perp
FIXED SOURCE card 2
:

FIXED SOURCE card j
AREA card 2
SOURCE cards
AREA cara 3
-
\cdot
AREA card k
SOURCE CARDS

The structure of the input data is shown in Figure 3.

Necessary data
YARD card 1 AREA card 1 SOURCE cards AREA card m SOURCE cards
YARD card 2 AREA card 1 SOURCE cards AREA card n SOURCE cards
YARD card p AREA card 1 SOURCE cards AREA card q SOURCE cards

Figure 3. Input data structure

4.2.2 AREA data card

The following data are to be entered in 1 line (or card). All length dimensions are in feet.

NAME	FORMAT	DESCRIPTION
NAMEA	AI, A4	Name of area (R1, R2, C1, C2, etc.)
ALENG	F10	Length of residential or commercial area
WIDTH	F10	Width of residential or commercial area (i.e., how far does it extend away from the yard)
DB	F10	Distance from nearest boundary of residential or commercial area (property line) to the place where the noise attenuating barrier is to be built
ATTIND	F5	Excess noise attenuation due to industrial region between the yard and the residential or commercial region
ATTRES	F5	Excess noise attenuation due to the residential or commercial area itself
DNMOV	F10	Distance from the moving sources to the property line
DNFIX	F10	Distance from the fixed sources to the property line.
NMOV	I5	Number of moving sources to follow in SOURCE data cards ($0 \leq$ NMOV ≤ 10)
NFIX	I5	Number of fixed sources to follow in SOURCE data cards ($0 \leq$ NMOV ≤ 10)

Figure 4 shows the relationship of these various parameters.

Figure 4. Geometry of Area.

4.2.3 SOURCE data card

Each source is to be entered in a separate line (or card). Each line is of the following format. (Note that the moving sources' SOURCE cards have to be placed before the fixed sources' SOURCE cards. The moving sources have been numbered $1 \sim 7$, the fixed sources 8-15 to assure that the order is correct when the SOURCE cards are put in ascending order).

NAME FORMAT DESCRIPTION

ISM I5 Noise source number
ISM - ABEREVIATION NOISE SOURCE

1	HS	hump switcher
2	MS	make-up switcher
3	IS	industrial switcher
4	CS	classification switcher
5	IB	inbound train
6	OB1	outbound train (roadhaul)
7	OB2	outbound train (local)
8	CI	car inpact
9	MR	master retarder
10	IR	inert retarder
11	CT	crane truck
12	GT	goat truck
13	IL	idiing locomotive
14	RC	refrigerator car
15	LT	load test

$\left.\begin{array}{lll}\text { ED } & \text { F7 } & \text { Number of sources or event's daytime } \\ \text { EN } & \text { F7 } & \text { Number of sources or events nighttime }\end{array}\right\}$ For sources $1-12$

Figure 5. Yard data listing for sample run

4.3 Constraints and Limitations

Certain constraints are placed on the input data which may not have been explicitly stated. In the input, lines 1-20 are to be put in exactly as shown in the example in section 4.1. They are not to be altered in any way. strictly speaking, these are not input data, but they form an integral part of the model. They are relegated here instead of in the program itself because it is too laborious to define all the terms in the program; for instance, defining the yard types or the $d B$ bands in the program would have involved a great deal of typing.

Line 21: REG - the 5 regulation levels. Exactly 5 levels have to be input. They are all integers (right justified), I3 format. If less than 5 levels are desired, say 3 , use 99 for the first $(5-3)=2$ level.

Line 22: IP print switch. Must be valued 1, 2 or 3.
Yard card:
IT, the yard type, must be between 1 and 8.
NAREAS: must be the same as the number of area cards to follow.

Area card:
All length dimensions are in feet. *
As explained in volume 1 , only one distance is used for all the moving sources (DNMOV) and one distance for all the fixed sources (DNFIX).

Number of moving sources (NMOV) is less than or equal to 10.

Number of fixed sources (NFIX) is less than or equal to 10.

5.0 INTERPRETING THE OUTPUT

5.1 Structure and Level of Detail

There are three levels of detail for the output, defined by the output switch IP.

Level I (IP=1): Only grand totals of each yard type and their projection to the total number of yards for each yard type in the U.S.

Level II (IP=2): Level I and totals for each yard.

Level III (IP=3): Level II and totals for each residential area. This is the finest level of detail.

Warning: Using Level III and the complete data base of 183 yards will generate about 40,000 lines of output (approximately 600 pages). If you do not want - or do not need - to go through pages and pages of numbers, do not use Level III.

The following description refers to the sample output listing at the end of the section which will run on the sample input data presented in the previous section. Note that this listing was obtained from the terminal and the carriage controls are different from those used with the lineprinter.

The structure of the output is presented in Figure 6. Note: property line refers to the nearest line of residential property to the railyard.

Regulation levels
```Yard Name Yard data Area Area data Population exposed and ENI (LWP) within the 3 dB bands for baseline noise level The baseline Lan, Leq, Lmax at property line for each source affecting area The baseline composite noise level (from all sources and background level) at the property line, PE, ENI, DENI, COST, and WALL (if appropriate) The Ldn, Leq, L_max and the noise level, PE, ENI, DENI, COST and WALL information and format is repeated for each of the five regulation noise levels and the noise level attained under the maximum wall height (MW). \\ Area \\ \(\vdots\) \\ Totals for yard \\ population exposed and ENI within the 3 dB bands for baseline level \\ PE, ENI, DENI, COST, number of areas which meet the regulation noise level, and whether the yard is in compliance with the respective regulation level without building walls ( \(1=y e s, 0=n o\) )```
Yard
Grand totals   For each yard type,   Number of yards in sample PE, ENI, DENI, COST   Total number of yards in each type, projected PE, ENI, DENI, COST   Number of yards already in compliance with the regulated level.   OB bands for baseline   PE and ENI for sample total   PE and ENI projected for each yard type

Figure 6. Structure of output listing

### 5.2 Output Data for Each Yard

For each yard, the following data are listed:

Yard name and yard type

POP DEN Population density in the vicinity of the yard (people/sq. mi.)

USAGE Fraction of land around the railyard which is used for residential and commercial puposes

EFF POP Effective population density (the population density scaled up to take into account that only a fraction of the area is populated)

BKGD Background Lan from the regression equation in the "100-site study." Set to 54 dB in the Lin computation if above 54 dB
\# AREAS Number of residential and commercial areas in this yard

For each area, the following data are listed:

AREA Name of area (R1, R2, C1, C2, etc.)
LENGTH Length of area (dimension of area in the direction along the railroad tracks)

WIDTA Width of area (dimension of area in the direction perpendicular to the railroad tracks)

DB Distance from property line to the place where the noise attenuating barrier is to be built

DI Excess noise attenuation due to intervening industrial area

DR Excess noise attenuation due to the residential or commercial area itself

DNM Distance from property line to the moving sources
DNF Distance from property line to the fixed sources
NMS Number of moving sources
NFS Number of fixed sources

dB bands for baseline$\quad 3 \mathrm{~dB}$ increments from 55 dB to $>82$	
	Population exposed to noise level within the dB band.
ENI	Equivalent noise impact or level weighted population (LWP) for the dB band. Note that the excess residential attention (DR) has been subtracted from the level, so the composite level for the $d B$ bands is lower than the composite level at the property line.
maxim   a wal   ever	For baseline, each of the 5 regulated levels and the mum wall height level (either the noise level with 11 height of 30 ft , or the 5 th regulated level, whichis lower:).
1isti	ing by noise source
LDN	$L_{\text {dn }}$
LEQ	$L_{\text {eq }}(1) \quad$ at property line
LMAX	maximum instantaneous noise level
LEVEL	composite noise level (Lin of all noise sources and the background noise)
PE	population exposed
ENI	LWP
DENI	$\triangle \mathrm{LWP}$
COST	Cost for building a wall of length ALENG and height WALL
WALL	Minimum wall height needed to reduce noise at receiving property line to this regulation level
Totals for yard	
$d B$ bands for baseline	
PE and ENI summed over all areas for each of the respective dB bands	
	-36-

```
PE, ENI, DENI, COST, NP, IC for baseline, each of the five
 regulation levels and the maximum wall height
 level
NA: Number of areas which can meet the regulation
 level. Note that in Airline, Milwaukee all areas
 (five) can meet all levels except 55. Note that
 the failure of all areas to meet the level of 55
 requires the maximum wall to be built five times
IC: Whether the yard is in compliance with the regula-
 tion level already without building any noise
 attenuation barrier. Note that the yard meets
 only the }75\textrm{dB}\mathrm{ regulation level without building
 walls
A complete set of output data for a sample railyard is shown
in Table 2.
5.3 Totals of Output Data For All Yards
Listed for each yard type are the following for the base-
 line, each of the five regulation levels, and the
 maximum wall height level:
SAMPLE:
\# YD: \(\quad\) Number of yards in the dataset
\(\quad\) of this type
PE: Total of population exposed summed over
 yards of this type.
ENI: Total of LWP summed over yards of this type.
DENI: Total of \triangleLWP summed over yards of this type.
COST: Total costs of erecting barriers summed over
 yards of this type.
PROJECTED:،
\# YD: Total number of yards of this type in the United States
PE: Projected total of population exposed
```

ENI:	Projected total of LWP
DENI:	Projected total of $\Delta L W P$
COST:	Projected total cost
\#IC:	Number of yards in the dataset already in   compliance with the respective regulation   without building barriers.

dB bands for baseline

- Total of PE and ENI in each of the AB bands, summed over all yards of the respective types in the dataset and the projected PE and ENI of each $d B$ band.

The set of grand totals for the sample railyards and projected to a national level for all railyards is shown in Table 3.

The reader is referred to volume 3 , section 5 for an example of checking whether the output is reasonable.



```
 44.7 6.46E.02 4.74E101 2.45:.60t S.70F.104 7
 60
 GHIIRCRE LHN LED\ LHAX
\begin{tabular}{llll}
111 & 54.7 & 47.3 & 37.1 \\
1111 & 34.7 & 17.3 & 137.4 \\
\(H 11\) & 51.7 & 47.0 & 69.0
\end{tabular}
I.EUEL. FE EHY LENE COBT WAL.L.
60.0 1.017:102 6.tIIE:100 6.70E101 1.05E105 10
Hil
SHIJRCE LIM T.ET I. HAX
\begin{tabular}{llll}
11 & 51.6 & 46.2 & \(\$ 14.4\) \\
1151 & 51.6 & 46.2 & \(\$ 4.4\)
\end{tabular}
\begin{tabular}{llll}
HR & 51.6 & 46.2 & 64.4 \\
& 49.2 & 14.3 & 66.1
\end{tabular}
LEVEL FE LENI HENI COAT WAIL
5il.0 6.04E101 \(9.69 E-017.29 E 102 \quad\) 2.77Et05 30
AREA LENOTH WIITH IH JI JR INH INF NMG HFS
```



```
JIB IANIIS FOR IAASL:L.INE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 55-50 & 50-41 & 61-64 & 64-67 & 87-70 & 70-73 & 73-74 & 76-79 & 77-82 & > \(\mathrm{O}_{2}\) \\
\hline PE & 6.515102 & 1. 25E109 & 3.47E-02 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline FNI & 1.33t:101 & 2.76E101 & 1.01E-02 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}
SDURTIE: LDN LEIT I.MAX
\begin{tabular}{llll}
111 & 64.0 & 59.6 & 97.0 \\
4112 & 65.0 & 59.8 & 77.0 \\
1.1 & 63.1 & 60.2 & 90.3
\end{tabular}
L.EUFL PE EHI WFNI COET WALI.
\(69.97 .76 E 102 \quad 7.09 E 1010.0 \quad 0.0\)
65
BHIHCE LDH LE:H LKAX
19 60.0 34.6 72.0
```


$\div 0$

gatmete	1.1010	1.EA	1. HAX			
1 fl	65.0	59.6	97.0			
1111	65:0	59.6	97.0			
CII	60.1	53.2	B5. 3			
If	91.4	17.6	70.3			
I. CuIL	IE:		I:NI	lient	cont	WALLL
49.0	7.7al:	27	11E101	1.791:100	2.701004	5

45

Sominet	1.IN	I.ER	1. HAX			
111	89.18	51.1	192.5			
(1)15	59.17	51.4	42.5			
cif	51.2	53.3	183.4			
IR	51.1	16.1	175.1			
Levisi.	PE		[ENI	UENI	cost	WALI.
61.7	bisimio		1.75E101	2.04E101	1.20E104	${ }^{\square}$

so

mounce	Lun	21:0	limax			
10	54.0	40.6	06.7			
011	54.0	419.6	86.7			
CI	52.1	47.3	77.3			
IR	415.3	10.3	69.0			
I.cuel	PE		EN!	DEMt	Cost	WALL
59.0	1.:34E:		1.93E100	7.07:101	1.18E105	0

HW

bource	L.DN	LEO	l.max			
$1{ }^{11}$	51.n	16.2	10.4 4			
(1)1	51.6	46. 2	114,4			
C1	50.0	45.1	75.2			
in	43.2	310.2	66.9			
tevei.	PE		ENI	HENI	cost	WALL
50, 2	A.OBE 1	19	. 69 E-01	7.19E101	1.776105	30



```
III.
sharice l.th ten lmax
\begin{tabular}{llll}
HS & 63.1 & 511.7 & 70.0 \\
13 & 64.7 & 60.1 & 70.0 \\
10 & 65.0 & 517.6 & 97.0 \\
1019 & 51.2 & 10.0 & 90.0
\end{tabular}
LEUEL PE EN! DENI CODT HNLL
```

$67.5 \quad 1.9 .36+031.6954020 .0$ 0.0 ..... 0
gnince LIN Leg t.hax

HS	50.4	53.7	65.0
15	59.7	55.1	85.0
10	60.0	51.6	92.11
1102	19.3	43.1	04.0

```
```64.7 1.6.3E403 1.31E102 3.05E101 7.40E104 760
```

LIN Le: Lhax

```
\begin{tabular}{lllllll} 
HS & 52.7 & 41.0 & 79.3 & & \\
15 & 51.0 & 49.1 & 79.3 & & \\
11 & 54.3 & 10.9 & 07.1 & & \\
1012 & 13.5 & 30.1 & 79.3 & & \\
LEVEL & PE & ENI & UENI & COST & WALL
\end{tabular}
MH
BrhJece lidf LEO LMAX
```

14	50.0	15.3	76.6
10	51.3	16.7	76.6
111	51.6	16.2	114.1
1117	40.13	35.4	76.6

I．EUES．PE：ENI II：H！COST WNL．I．
50.1 2．13E102 3，5月E100 1． 5 SEIO2 3．5AE105 30

TATALG FOR YAN』
SH TIANLIG FOR JIAGI：L．INE

		［5］－61	61－64	64－67	17－70	$70 \cdot 73$	73－76	76－79	79－02	＞82
re：	1．94E103	9．64E102	5．30E 01	0.0	0.0	0.0	0.0	0.0	0.0	0.0
EN：	2．96E102	$2.07 E+02$	1．02E101	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C．EUEI．	位	E．NI	newt	c1381	110	1 C				
HL	5．7\％E103	5． 52 SE 102	0.0	0.0	5					
75	5．97E）03	5．2TE102	0.0	0.0	5	1				
70	5.97103	5．12E10\％	9．5EE 100	5．40E104	5	0				
65	5.005103	3．77E102	1．14E102	2．16E105	5	0				
60	1．761：103	7．15E101	4．50EJ02	$6.72 E+05$	5	0				
\％\％	0.11	0.0	$5.22 \mathrm{E}+02$	1．15E＋06	0	0				
MW	A．10E102	1．21E101	5． $10 \mathrm{f}+02$	1．15E106	5					

[^0]BIJUREE LIH LEA L．MAX
$\begin{array}{llll}119 & 64.7 & 59.6 & 77.1 \\ 16 & 64.4 & 59.4 & 50.1\end{array}$ I．EUEI．TEE IIE CISI WAIL

TOTAL OF OUTPUT DATA FOR ALL YARDS

RFinti Tolnt．F（1）ALL．YARHE
GAMF＇LE MRIDECTEOI

	gnmile				PRITIFCSEO							
	－Y	P1：	1：111	115：11	cos：	1	$Y \mathrm{~J}$	PE	E．N1	UENI	cost	－IC
L．ITH U04．HIStI												
11.	1	$5.771 .10: 5$	5.285102	0.0	0.0		11	$2.631: 105$	2．30E104	0.0	0.0	
75	1	6．77E103	5.225102	0.0	0,0		11	2，仿库05	2.30 F ＋04	0.0	0.0	1
70	1	5．97E103	5，120：102	9，ISE100	5．A0F104		11	2．63t：105	2，2t5lot	A．20E102	2.305106	0
45	1	5.00510 .5	3．77E102	1，441： 102	2．16E10S		11	2．20E．105	1．6AE101	6．35E103	1．001：107	0
f0	1	1．761510．3	7．15E101	1．508102	6．72F105		44	7．76E104	$3.15 E 103$	1．9EE104	$3.05 E 107$	0
：9\％	1	0.0	0.0	5．23E102	1．15R．106		44	0.0	0.0	2.30 ESOA	5.08 E 107	0
HW	1	6，10E10\％	1．21E101	5．10\％+02			11	2． 675104	5，33E102	2． $24 E 104$	5.085107	
HEDIIH UDI．HUIN												
H．	3	1．18E101	$2.26 E 103$	0.0	0.0		51	2．47E105	3．0UE 04	0.0	0.0	
75	\＄	1．45E104	2．17E103	7．03Et01	7．SOE 104		51	2．46E103	3．7SE10A	1．20E103	1．63E＋06	2
70	3	1．26E104	1． 68 E103	6．03E： 0 ？？	F．14E105		51	2．15L105	2．02E10A	1．02E104	6．73E1OS	0
65	3	1．02E104	1．0才1：103	1．2AE103	1．40E106		S1	1．73F105	1．77E10A	2．0DE 01	2．30E＋07	0
60	3	4．525103	2． 3 \％E10\％	2．0．3F－103	I． 3 SE106		\＄1	7．67E10才	3．74E103	3．4FEIO4	$6.39 E 107$	0
55^{5}	3	0.0	0.0	2．26E103	5.0195106		51	0.0	0.0	3，05E： 104	$1.00 E+08$	0
11 W	3	3．115103	2．28E102．	2．0AE 103	$5.179 E+06$		51	5．att104	S．ASE 103	3．4AE104	2．OOEIOO	
HIth VIt．HIIHF												
1 ll	1	1． 1 DEEIOA	2． 18 C103	0.0	0.0		27	3．995105	6．25E109	0.0	0.0	
75	1	1．JBET04	2.16 El03	0.0	0.0		27	3．99E105	6．25E104	0.0	0.0	1
70	1	19．67E103	1.33 E 103	0.295102	4．59E105		97	2．136E1O5	3．05E 104	2，40E104	1．33E107	0
65	1	7．7AE103	П．37E102	1，325103	0． 3050.105		29	2．2AE105	2．43E104	3．02E104	2．11E107	0
60	1	3．215603	1．HIEIO2	1．77E103	2，131：106		29	$9.305+04$	5．25： 103	5．73E104	6．1DE＋07	0
5	1	0.0	0.0	$2.16 E 103$	2． 1335106		29	0.0	0.0	$6.25 E 101$	0．21E 07	0
HW	1	2．40E＋03	1．22E102	2．g3E103	T．त3E106		27	6．96：104	3．54E10．7	$5.70 \mathrm{EFO4}$	0．21E\07	
I．OW UIII．Ft．nt												
IIL．	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	
76	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
70	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
64	0	0.0	0.0	0.0	0.0		176	0.0	0.0	0.0	0.0	0
60	0	0.0	0.0	6．0	0.0		176	0.0	0.0	0.0	0.0	0
5\％	0	0.0	0.0	0.0	0.0 ，		476	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		476	0.0	0,0	0.0	0.0	
HEIISH VOL，FLAT												
D．	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	
75	0	0.0	0.0	0.0	0.0		346	0,0	0.0	0.0	10.0	0
70	0	0.0	0.0	0.0	0.0		146	0.0	0.0	0.0	0.0	0
6\％	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
－ 10	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
55	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		316	0.0	0.0	6．0	0,0	

HEDIIH UDR．HUIN

	gnmile				PRITIFCSEO							
	－Y	P1：	1：111	115：11	cos：	1	$Y \mathrm{~J}$	PE	E．N1	UENI	cost	－IC
L．ITH U04．HIStI												
11.	1	$5.771 .10: 5$	5.285102	0.0	0.0		11	$2.631: 105$	2．30E104	0.0	0.0	
75	1	6．77E103	5.225102	0.0	0,0		11	2，仿库05	2.30 F ＋04	0.0	0.0	1
70	1	5．97E103	5，120：102	9，ISE100	5．A0F104		11	2．63t：105	2，2t5lot	A．20E102	2.305106	0
45	1	5.00510 .5	3．77E102	1，441： 102	2．16E10S		11	2．20E．105	1．6AE101	6．35E103	1．001：107	0
f0	1	1．761510．3	7．15E101	1．508102	6．72F105		44	7．76E104	$3.15 E 103$	1．9EE104	$3.05 E 107$	0
：9\％	1	0.0	0.0	5．23E102	1．15R．106		44	0.0	0.0	2.30 ESOA	5.08 E 107	0
HW	1	6，10E10\％	1．21E101	5．10\％+02			11	2． 675104	5，33E102	2． $24 E 104$	5.085107	
HEDIIH UDI．HUIN												
H．	3	1．18E101	$2.26 E 103$	0.0	0.0		51	2．47E105	3．0UE 04	0.0	0.0	
75	\＄	1．45E104	2．17E103	7．03Et01	7．SOE 104		51	2．46E103	3．7SE10A	1．20E103	1．63E＋06	2
70	3	1．26E104	1． 68 E103	6．03E： 0 ？？	F．14E105		51	2．15L105	2．02E10A	1．02E104	6．73E1OS	0
65	3	1．02E104	1．0才1：103	1．2AE103	1．40E106		S1	1．73F105	1．77E10A	2．0DE 01	2．30E＋07	0
60	3	4．525103	2． 3 \％E10\％	2．0．3F－103	I． 3 SE106		\＄1	7．67E10才	3．74E103	3．4FEIO4	$6.39 E 107$	0
55^{5}	3	0.0	0.0	2．26E103	5.0195106		51	0.0	0.0	3，05E： 104	$1.00 E+08$	0
11 W	3	3．115103	2．28E102．	2．0AE 103	$5.179 E+06$		51	5．att104	S．ASE 103	3．4AE104	2．OOEIOO	
HIth VIt．HIIHF												
1 ll	1	1． 1 DEEIOA	2． 18 C103	0.0	0.0		27	3．995105	6．25E109	0.0	0.0	
75	1	1．JBET04	2.16 El03	0.0	0.0		27	3．99E105	6．25E104	0.0	0.0	1
70	1	19．67E103	1.33 E 103	0.295102	4．59E105		97	2．136E1O5	3．05E 104	2，40E104	1．33E107	0
65	1	7．7AE103	П．37E102	1，325103	0． 3050.105		29	2．2AE105	2．43E104	3．02E104	2．11E107	0
60	1	3．215603	1．HIEIO2	1．77E103	2，131：106		29	$9.305+04$	5．25： 103	5．73E104	6．1DE＋07	0
5	1	0.0	0.0	$2.16 E 103$	2． 1335106		29	0.0	0.0	$6.25 E 101$	0．21E 07	0
HW	1	2．40E＋03	1．22E102	2．g3E103	T．त3E106		27	6．96：104	3．54E10．7	$5.70 \mathrm{EFO4}$	0．21E\07	
I．OW UIII．Ft．nt												
IIL．	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	
76	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
70	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
64	0	0.0	0.0	0.0	0.0		176	0.0	0.0	0.0	0.0	0
60	0	0.0	0.0	6．0	0.0		176	0.0	0.0	0.0	0.0	0
5\％	0	0.0	0.0	0.0	0.0 ，		476	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		476	0.0	0,0	0.0	0.0	
HEIISH VOL，FLAT												
D．	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	
75	0	0.0	0.0	0.0	0.0		346	0,0	0.0	0.0	10.0	0
70	0	0.0	0.0	0.0	0.0		146	0.0	0.0	0.0	0.0	0
6\％	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
－ 10	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
55	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		316	0.0	0.0	6．0	0,0	

llt HL VII．HIIHF

	gnmile				PRITIFCSEO							
	－Y	P1：	1：111	115：11	cos：	1	$Y \mathrm{~J}$	PE	E．N1	UENI	cost	－IC
L．ITH U04．HIStI												
11.	1	$5.771 .10: 5$	5.285102	0.0	0.0		11	$2.631: 105$	2．30E104	0.0	0.0	
75	1	6．77E103	5.225102	0.0	0,0		11	2，仿库05	2.30 F ＋04	0.0	0.0	1
70	1	5．97E103	5，120：102	9，ISE100	5．A0F104		11	2．63t：105	2，2t5lot	A．20E102	2.305106	0
45	1	5.00510 .5	3．77E102	1，441： 102	2．16E10S		11	2．20E．105	1．6AE101	6．35E103	1．001：107	0
f0	1	1．761510．3	7．15E101	1．508102	6．72F105		44	7．76E104	$3.15 E 103$	1．9EE104	$3.05 E 107$	0
：9\％	1	0.0	0.0	5．23E102	1．15R．106		44	0.0	0.0	2.30 ESOA	5.08 E 107	0
HW	1	6，10E10\％	1．21E101	5．10\％+02			11	2． 675104	5，33E102	2． $24 E 104$	5.085107	
HEDIIH UDI．HUIN												
H．	3	1．18E101	$2.26 E 103$	0.0	0.0		51	2．47E105	3．0UE 04	0.0	0.0	
75	\＄	1．45E104	2．17E103	7．03Et01	7．SOE 104		51	2．46E103	3．7SE10A	1．20E103	1．63E＋06	2
70	3	1．26E104	1． 68 E103	6．03E： 0 ？？	F．14E105		51	2．15L105	2．02E10A	1．02E104	6．73E1OS	0
65	3	1．02E104	1．0才1：103	1．2AE103	1．40E106		S1	1．73F105	1．77E10A	2．0DE 01	2．30E＋07	0
60	3	4．525103	2． 3 \％E10\％	2．0．3F－103	I． 3 SE106		\＄1	7．67E10才	3．74E103	3．4FEIO4	$6.39 E 107$	0
55^{5}	3	0.0	0.0	2．26E103	5.0195106		51	0.0	0.0	3，05E： 104	$1.00 E+08$	0
11 W	3	3．115103	2．28E102．	2．0AE 103	$5.179 E+06$		51	5．att104	S．ASE 103	3．4AE104	2．OOEIOO	
HIth VIt．HIIHF												
1 ll	1	1． 1 DEEIOA	2． 18 C103	0.0	0.0		27	3．995105	6．25E109	0.0	0.0	
75	1	1．JBET04	2.16 El03	0.0	0.0		27	3．99E105	6．25E104	0.0	0.0	1
70	1	19．67E103	1.33 E 103	0.295102	4．59E105		97	2．136E1O5	3．05E 104	2，40E104	1．33E107	0
65	1	7．7AE103	П．37E102	1，325103	0． 3050.105		29	2．2AE105	2．43E104	3．02E104	2．11E107	0
60	1	3．215603	1．HIEIO2	1．77E103	2，131：106		29	$9.305+04$	5．25： 103	5．73E104	6．1DE＋07	0
5	1	0.0	0.0	$2.16 E 103$	2． 1335106		29	0.0	0.0	$6.25 E 101$	0．21E 07	0
HW	1	2．40E＋03	1．22E102	2．g3E103	T．त3E106		27	6．96：104	3．54E10．7	$5.70 \mathrm{EFO4}$	0．21E\07	
I．OW UIII．Ft．nt												
IIL．	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	
76	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
70	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
64	0	0.0	0.0	0.0	0.0		176	0.0	0.0	0.0	0.0	0
60	0	0.0	0.0	6．0	0.0		176	0.0	0.0	0.0	0.0	0
5\％	0	0.0	0.0	0.0	0.0 ，		476	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		476	0.0	0,0	0.0	0.0	
HEIISH VOL，FLAT												
D．	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	
75	0	0.0	0.0	0.0	0.0		346	0,0	0.0	0.0	10.0	0
70	0	0.0	0.0	0.0	0.0		146	0.0	0.0	0.0	0.0	0
6\％	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
－ 10	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
55	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		316	0.0	0.0	6．0	0,0	

I．ПW UIII．Ft．AT

	gnmile				PRITIFCSEO							
	－Y	P1：	1：111	115：11	cos：	1	$Y \mathrm{~J}$	PE	E．N1	UENI	cost	－IC
L．ITH U04．HIStI												
11.	1	$5.771 .10: 5$	5.285102	0.0	0.0		11	$2.631: 105$	2．30E104	0.0	0.0	
75	1	6．77E103	5.225102	0.0	0,0		11	2，仿库05	2.30 F ＋04	0.0	0.0	1
70	1	5．97E103	5，120：102	9，ISE100	5．A0F104		11	2．63t：105	2，2t5lot	A．20E102	2.305106	0
45	1	5.00510 .5	3．77E102	1，441： 102	2．16E10S		11	2．20E．105	1．6AE101	6．35E103	1．001：107	0
f0	1	1．761510．3	7．15E101	1．508102	6．72F105		44	7．76E104	$3.15 E 103$	1．9EE104	$3.05 E 107$	0
：9\％	1	0.0	0.0	5．23E102	1．15R．106		44	0.0	0.0	2.30 ESOA	5.08 E 107	0
HW	1	6，10E10\％	1．21E101	5．10\％+02			11	2． 675104	5，33E102	2． $24 E 104$	5.085107	
HEDIIH UDI．HUIN												
H．	3	1．18E101	$2.26 E 103$	0.0	0.0		51	2．47E105	3．0UE 04	0.0	0.0	
75	\＄	1．45E104	2．17E103	7．03Et01	7．SOE 104		51	2．46E103	3．7SE10A	1．20E103	1．63E＋06	2
70	3	1．26E104	1． 68 E103	6．03E： 0 ？？	F．14E105		51	2．15L105	2．02E10A	1．02E104	6．73E1OS	0
65	3	1．02E104	1．0才1：103	1．2AE103	1．40E106		S1	1．73F105	1．77E10A	2．0DE 01	2．30E＋07	0
60	3	4．525103	2． 3 \％E10\％	2．0．3F－103	I． 3 SE106		\＄1	7．67E10才	3．74E103	3．4FEIO4	$6.39 E 107$	0
55^{5}	3	0.0	0.0	2．26E103	5.0195106		51	0.0	0.0	3，05E： 104	$1.00 E+08$	0
11 W	3	3．115103	2．28E102．	2．0AE 103	$5.179 E+06$		51	5．att104	S．ASE 103	3．4AE104	2．OOEIOO	
HIth VIt．HIIHF												
1 ll	1	1． 1 DEEIOA	2． 18 C103	0.0	0.0		27	3．995105	6．25E109	0.0	0.0	
75	1	1．JBET04	2.16 El03	0.0	0.0		27	3．99E105	6．25E104	0.0	0.0	1
70	1	19．67E103	1.33 E 103	0.295102	4．59E105		97	2．136E1O5	3．05E 104	2，40E104	1．33E107	0
65	1	7．7AE103	П．37E102	1，325103	0． 3050.105		29	2．2AE105	2．43E104	3．02E104	2．11E107	0
60	1	3．215603	1．HIEIO2	1．77E103	2，131：106		29	$9.305+04$	5．25： 103	5．73E104	6．1DE＋07	0
5	1	0.0	0.0	$2.16 E 103$	2． 1335106		29	0.0	0.0	$6.25 E 101$	0．21E 07	0
HW	1	2．40E＋03	1．22E102	2．g3E103	T．त3E106		27	6．96：104	3．54E10．7	$5.70 \mathrm{EFO4}$	0．21E\07	
I．OW UIII．Ft．nt												
IIL．	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	
76	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
70	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
64	0	0.0	0.0	0.0	0.0		176	0.0	0.0	0.0	0.0	0
60	0	0.0	0.0	6．0	0.0		176	0.0	0.0	0.0	0.0	0
5\％	0	0.0	0.0	0.0	0.0 ，		476	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		476	0.0	0,0	0.0	0.0	
HEIISH VOL，FLAT												
D．	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	
75	0	0.0	0.0	0.0	0.0		346	0,0	0.0	0.0	10.0	0
70	0	0.0	0.0	0.0	0.0		146	0.0	0.0	0.0	0.0	0
6\％	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
－ 10	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
55	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		316	0.0	0.0	6．0	0,0	

	gnmile				PRITIFCSEO							
	－Y	P1：	1：111	115：11	cos：	1	$Y \mathrm{~J}$	PE	E．N1	UENI	cost	－IC
L．ITH U04．HIStI												
11.	1	$5.771 .10: 5$	5.285102	0.0	0.0		11	$2.631: 105$	2．30E104	0.0	0.0	
75	1	6．77E103	5.225102	0.0	0,0		11	2，仿库05	2.30 F ＋04	0.0	0.0	1
70	1	5．97E103	5，120：102	9，ISE100	5．A0F104		11	2．63t：105	2，2t5lot	A．20E102	2.305106	0
45	1	5.00510 .5	3．77E102	1，441： 102	2．16E10S		11	2．20E．105	1．6AE101	6．35E103	1．001：107	0
f0	1	1．761510．3	7．15E101	1．508102	6．72F105		44	7．76E104	$3.15 E 103$	1．9EE104	$3.05 E 107$	0
：9\％	1	0.0	0.0	5．23E102	1．15R．106		44	0.0	0.0	2.30 ESOA	5.08 E 107	0
HW	1	6，10E10\％	1．21E101	5．10\％+02			11	2． 675104	5，33E102	2． $24 E 104$	5.085107	
HEDIIH UDI．HUIN												
H．	3	1．18E101	$2.26 E 103$	0.0	0.0		51	2．47E105	3．0UE 04	0.0	0.0	
75	\＄	1．45E104	2．17E103	7．03Et01	7．SOE 104		51	2．46E103	3．7SE10A	1．20E103	1．63E＋06	2
70	3	1．26E104	1． 68 E103	6．03E： 0 ？？	F．14E105		51	2．15L105	2．02E10A	1．02E104	6．73E1OS	0
65	3	1．02E104	1．0才1：103	1．2AE103	1．40E106		S1	1．73F105	1．77E10A	2．0DE 01	2．30E＋07	0
60	3	4．525103	2． 3 \％E10\％	2．0．3F－103	I． 3 SE106		\＄1	7．67E10才	3．74E103	3．4FEIO4	$6.39 E 107$	0
55^{5}	3	0.0	0.0	2．26E103	5.0195106		51	0.0	0.0	3，05E： 104	$1.00 E+08$	0
11 W	3	3．115103	2．28E102．	2．0AE 103	$5.179 E+06$		51	5．att104	S．ASE 103	3．4AE104	2．OOEIOO	
HIth VIt．HIIHF												
1 ll	1	1． 1 DEEIOA	2． 18 C103	0.0	0.0		27	3．995105	6．25E109	0.0	0.0	
75	1	1．JBET04	2.16 El03	0.0	0.0		27	3．99E105	6．25E104	0.0	0.0	1
70	1	19．67E103	1.33 E 103	0.295102	4．59E105		97	2．136E1O5	3．05E 104	2，40E104	1．33E107	0
65	1	7．7AE103	П．37E102	1，325103	0． 3050.105		29	2．2AE105	2．43E104	3．02E104	2．11E107	0
60	1	3．215603	1．HIEIO2	1．77E103	2，131：106		29	$9.305+04$	5．25： 103	5．73E104	6．1DE＋07	0
5	1	0.0	0.0	$2.16 E 103$	2． 1335106		29	0.0	0.0	$6.25 E 101$	0．21E 07	0
HW	1	2．40E＋03	1．22E102	2．g3E103	T．त3E106		27	6．96：104	3．54E10．7	$5.70 \mathrm{EFO4}$	0．21E\07	
I．OW UIII．Ft．nt												
IIL．	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	
76	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
70	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
64	0	0.0	0.0	0.0	0.0		176	0.0	0.0	0.0	0.0	0
60	0	0.0	0.0	6．0	0.0		176	0.0	0.0	0.0	0.0	0
5\％	0	0.0	0.0	0.0	0.0 ，		476	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		476	0.0	0,0	0.0	0.0	
HEIISH VOL，FLAT												
D．	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	
75	0	0.0	0.0	0.0	0.0		346	0,0	0.0	0.0	10.0	0
70	0	0.0	0.0	0.0	0.0		146	0.0	0.0	0.0	0.0	0
6\％	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
－ 10	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
55	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		316	0.0	0.0	6．0	0,0	

	gnmile				PRITIFCSEO							
	－Y	P1：	1：111	115：11	cos：	1	$Y \mathrm{~J}$	PE	E．N1	UENI	cost	－IC
L．ITH U04．HIStI												
11.	1	$5.771 .10: 5$	5.285102	0.0	0.0		11	$2.631: 105$	2．30E104	0.0	0.0	
75	1	6．77E103	5.225102	0.0	0,0		11	2，仿库05	2.30 F ＋04	0.0	0.0	1
70	1	5．97E103	5，120：102	9，ISE100	5．A0F104		11	2．63t：105	2，2t5lot	A．20E102	2.305106	0
45	1	5.00510 .5	3．77E102	1，441： 102	2．16E10S		11	2．20E．105	1．6AE101	6．35E103	1．001：107	0
f0	1	1．761510．3	7．15E101	1．508102	6．72F105		44	7．76E104	$3.15 E 103$	1．9EE104	$3.05 E 107$	0
：9\％	1	0.0	0.0	5．23E102	1．15R．106		44	0.0	0.0	2.30 ESOA	5.08 E 107	0
HW	1	6，10E10\％	1．21E101	5．10\％+02			11	2． 675104	5，33E102	2． $24 E 104$	5.085107	
HEDIIH UDI．HUIN												
H．	3	1．18E101	$2.26 E 103$	0.0	0.0		51	2．47E105	3．0UE 04	0.0	0.0	
75	\＄	1．45E104	2．17E103	7．03Et01	7．SOE 104		51	2．46E103	3．7SE10A	1．20E103	1．63E＋06	2
70	3	1．26E104	1． 68 E103	6．03E： 0 ？？	F．14E105		51	2．15L105	2．02E10A	1．02E104	6．73E1OS	0
65	3	1．02E104	1．0才1：103	1．2AE103	1．40E106		S1	1．73F105	1．77E10A	2．0DE 01	2．30E＋07	0
60	3	4．525103	2． 3 \％E10\％	2．0．3F－103	I． 3 SE106		\＄1	7．67E10才	3．74E103	3．4FEIO4	$6.39 E 107$	0
55^{5}	3	0.0	0.0	2．26E103	5.0195106		51	0.0	0.0	3，05E： 104	$1.00 E+08$	0
11 W	3	3．115103	2．28E102．	2．0AE 103	$5.179 E+06$		51	5．att104	S．ASE 103	3．4AE104	2．OOEIOO	
HIth VIt．HIIHF												
1 ll	1	1． 1 DEEIOA	2． 18 C103	0.0	0.0		27	3．995105	6．25E109	0.0	0.0	
75	1	1．JBET04	2.16 El03	0.0	0.0		27	3．99E105	6．25E104	0.0	0.0	1
70	1	19．67E103	1.33 E 103	0.295102	4．59E105		97	2．136E1O5	3．05E 104	2，40E104	1．33E107	0
65	1	7．7AE103	П．37E102	1，325103	0． 3050.105		29	2．2AE105	2．43E104	3．02E104	2．11E107	0
60	1	3．215603	1．HIEIO2	1．77E103	2，131：106		29	$9.305+04$	5．25： 103	5．73E104	6．1DE＋07	0
5	1	0.0	0.0	$2.16 E 103$	2． 1335106		29	0.0	0.0	$6.25 E 101$	0．21E 07	0
HW	1	2．40E＋03	1．22E102	2．g3E103	T．त3E106		27	6．96：104	3．54E10．7	$5.70 \mathrm{EFO4}$	0．21E\07	
I．OW UIII．Ft．nt												
IIL．	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	
76	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
70	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
64	0	0.0	0.0	0.0	0.0		176	0.0	0.0	0.0	0.0	0
60	0	0.0	0.0	6．0	0.0		176	0.0	0.0	0.0	0.0	0
5\％	0	0.0	0.0	0.0	0.0 ，		476	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		476	0.0	0,0	0.0	0.0	
HEIISH VOL，FLAT												
D．	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	
75	0	0.0	0.0	0.0	0.0		346	0,0	0.0	0.0	10.0	0
70	0	0.0	0.0	0.0	0.0		146	0.0	0.0	0.0	0.0	0
6\％	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
－ 10	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
55	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		316	0.0	0.0	6．0	0,0	

	gnmile				PRITIFCSEO							
	－Y	P1：	1：111	115：11	cos：	1	$Y \mathrm{~J}$	PE	E．N1	UENI	cost	－IC
L．ITH U04．HIStI												
11.	1	$5.771 .10: 5$	5.285102	0.0	0.0		11	$2.631: 105$	2．30E104	0.0	0.0	
75	1	6．77E103	5.225102	0.0	0,0		11	2，仿库05	2.30 F ＋04	0.0	0.0	1
70	1	5．97E103	5，120：102	9，ISE100	5．A0F104		11	2．63t：105	2，2t5lot	A．20E102	2.305106	0
45	1	5.00510 .5	3．77E102	1，441： 102	2．16E10S		11	2．20E．105	1．6AE101	6．35E103	1．001：107	0
f0	1	1．761510．3	7．15E101	1．508102	6．72F105		44	7．76E104	$3.15 E 103$	1．9EE104	$3.05 E 107$	0
：9\％	1	0.0	0.0	5．23E102	1．15R．106		44	0.0	0.0	2.30 ESOA	5.08 E 107	0
HW	1	6，10E10\％	1．21E101	5．10\％+02			11	2． 675104	5，33E102	2． $24 E 104$	5.085107	
HEDIIH UDI．HUIN												
H．	3	1．18E101	$2.26 E 103$	0.0	0.0		51	2．47E105	3．0UE 04	0.0	0.0	
75	\＄	1．45E104	2．17E103	7．03Et01	7．SOE 104		51	2．46E103	3．7SE10A	1．20E103	1．63E＋06	2
70	3	1．26E104	1． 68 E103	6．03E： 0 ？？	F．14E105		51	2．15L105	2．02E10A	1．02E104	6．73E1OS	0
65	3	1．02E104	1．0才1：103	1．2AE103	1．40E106		S1	1．73F105	1．77E10A	2．0DE 01	2．30E＋07	0
60	3	4．525103	2． 3 \％E10\％	2．0．3F－103	I． 3 SE106		\＄1	7．67E10才	3．74E103	3．4FEIO4	$6.39 E 107$	0
55^{5}	3	0.0	0.0	2．26E103	5.0195106		51	0.0	0.0	3，05E： 104	$1.00 E+08$	0
11 W	3	3．115103	2．28E102．	2．0AE 103	$5.179 E+06$		51	5．att104	S．ASE 103	3．4AE104	2．OOEIOO	
HIth VIt．HIIHF												
1 ll	1	1． 1 DEEIOA	2． 18 C103	0.0	0.0		27	3．995105	6．25E109	0.0	0.0	
75	1	1．JBET04	2.16 El03	0.0	0.0		27	3．99E105	6．25E104	0.0	0.0	1
70	1	19．67E103	1.33 E 103	0.295102	4．59E105		97	2．136E1O5	3．05E 104	2，40E104	1．33E107	0
65	1	7．7AE103	П．37E102	1，325103	0． 3050.105		29	2．2AE105	2．43E104	3．02E104	2．11E107	0
60	1	3．215603	1．HIEIO2	1．77E103	2，131：106		29	$9.305+04$	5．25： 103	5．73E104	6．1DE＋07	0
5	1	0.0	0.0	$2.16 E 103$	2． 1335106		29	0.0	0.0	$6.25 E 101$	0．21E 07	0
HW	1	2．40E＋03	1．22E102	2．g3E103	T．त3E106		27	6．96：104	3．54E10．7	$5.70 \mathrm{EFO4}$	0．21E\07	
I．OW UIII．Ft．nt												
IIL．	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	
76	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
70	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
64	0	0.0	0.0	0.0	0.0		176	0.0	0.0	0.0	0.0	0
60	0	0.0	0.0	6．0	0.0		176	0.0	0.0	0.0	0.0	0
5\％	0	0.0	0.0	0.0	0.0 ，		476	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		476	0.0	0,0	0.0	0.0	
HEIISH VOL，FLAT												
D．	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	
75	0	0.0	0.0	0.0	0.0		346	0,0	0.0	0.0	10.0	0
70	0	0.0	0.0	0.0	0.0		146	0.0	0.0	0.0	0.0	0
6\％	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
－ 10	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
55	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		316	0.0	0.0	6．0	0,0	

0.0
0.0
0.0
0.0
0.0
0.0
0.0 0
0
0
0
0

MEII＇SH VOI，FLAT

	gnmile				PRITIFCSEO							
	－Y	P1：	1：111	115：11	cos：	1	$Y \mathrm{~J}$	PE	E．N1	UENI	cost	－IC
L．ITH U04．HIStI												
11.	1	$5.771 .10: 5$	5.285102	0.0	0.0		11	$2.631: 105$	2．30E104	0.0	0.0	
75	1	6．77E103	5.225102	0.0	0,0		11	2，仿库05	2.30 F ＋04	0.0	0.0	1
70	1	5．97E103	5，120：102	9，ISE100	5．A0F104		11	2．63t：105	2，2t5lot	A．20E102	2.305106	0
45	1	5.00510 .5	3．77E102	1，441： 102	2．16E10S		11	2．20E．105	1．6AE101	6．35E103	1．001：107	0
f0	1	1．761510．3	7．15E101	1．508102	6．72F105		44	7．76E104	$3.15 E 103$	1．9EE104	$3.05 E 107$	0
：9\％	1	0.0	0.0	5．23E102	1．15R．106		44	0.0	0.0	2.30 ESOA	5.08 E 107	0
HW	1	6，10E10\％	1．21E101	5．10\％+02			11	2． 675104	5，33E102	2． $24 E 104$	5.085107	
HEDIIH UDI．HUIN												
H．	3	1．18E101	$2.26 E 103$	0.0	0.0		51	2．47E105	3．0UE 04	0.0	0.0	
75	\＄	1．45E104	2．17E103	7．03Et01	7．SOE 104		51	2．46E103	3．7SE10A	1．20E103	1．63E＋06	2
70	3	1．26E104	1． 68 E103	6．03E： 0 ？？	F．14E105		51	2．15L105	2．02E10A	1．02E104	6．73E1OS	0
65	3	1．02E104	1．0才1：103	1．2AE103	1．40E106		S1	1．73F105	1．77E10A	2．0DE 01	2．30E＋07	0
60	3	4．525103	2． 3 \％E10\％	2．0．3F－103	I． 3 SE106		\＄1	7．67E10才	3．74E103	3．4FEIO4	$6.39 E 107$	0
55^{5}	3	0.0	0.0	2．26E103	5.0195106		51	0.0	0.0	3，05E： 104	$1.00 E+08$	0
11 W	3	3．115103	2．28E102．	2．0AE 103	$5.179 E+06$		51	5．att104	S．ASE 103	3．4AE104	2．OOEIOO	
HIth VIt．HIIHF												
1 ll	1	1． 1 DEEIOA	2． 18 C103	0.0	0.0		27	3．995105	6．25E109	0.0	0.0	
75	1	1．JBET04	2.16 El03	0.0	0.0		27	3．99E105	6．25E104	0.0	0.0	1
70	1	19．67E103	1.33 E 103	0.295102	4．59E105		97	2．136E1O5	3．05E 104	2，40E104	1．33E107	0
65	1	7．7AE103	П．37E102	1，325103	0． 3050.105		29	2．2AE105	2．43E104	3．02E104	2．11E107	0
60	1	3．215603	1．HIEIO2	1．77E103	2，131：106		29	$9.305+04$	5．25： 103	5．73E104	6．1DE＋07	0
5	1	0.0	0.0	$2.16 E 103$	2． 1335106		29	0.0	0.0	$6.25 E 101$	0．21E 07	0
HW	1	2．40E＋03	1．22E102	2．g3E103	T．त3E106		27	6．96：104	3．54E10．7	$5.70 \mathrm{EFO4}$	0．21E\07	
I．OW UIII．Ft．nt												
IIL．	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	
76	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
70	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
64	0	0.0	0.0	0.0	0.0		176	0.0	0.0	0.0	0.0	0
60	0	0.0	0.0	6．0	0.0		176	0.0	0.0	0.0	0.0	0
5\％	0	0.0	0.0	0.0	0.0 ，		476	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		476	0.0	0,0	0.0	0.0	
HEIISH VOL，FLAT												
D．	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	
75	0	0.0	0.0	0.0	0.0		346	0,0	0.0	0.0	10.0	0
70	0	0.0	0.0	0.0	0.0		146	0.0	0.0	0.0	0.0	0
6\％	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
－ 10	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
55	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		316	0.0	0.0	6．0	0,0	

	gnmile				PRITIFCSEO							
	－Y	P1：	1：111	115：11	cos：	1	$Y \mathrm{~J}$	PE	E．N1	UENI	cost	－IC
L．ITH U04．HIStI												
11.	1	$5.771 .10: 5$	5.285102	0.0	0.0		11	$2.631: 105$	2．30E104	0.0	0.0	
75	1	6．77E103	5.225102	0.0	0,0		11	2，仿库05	2.30 F ＋04	0.0	0.0	1
70	1	5．97E103	5，120：102	9，ISE100	5．A0F104		11	2．63t：105	2，2t5lot	A．20E102	2.305106	0
45	1	5.00510 .5	3．77E102	1，441： 102	2．16E10S		11	2．20E．105	1．6AE101	6．35E103	1．001：107	0
f0	1	1．761510．3	7．15E101	1．508102	6．72F105		44	7．76E104	$3.15 E 103$	1．9EE104	$3.05 E 107$	0
：9\％	1	0.0	0.0	5．23E102	1．15R．106		44	0.0	0.0	2.30 ESOA	5.08 E 107	0
HW	1	6，10E10\％	1．21E101	5．10\％+02			11	2． 675104	5，33E102	2． $24 E 104$	5.085107	
HEDIIH UDI．HUIN												
H．	3	1．18E101	$2.26 E 103$	0.0	0.0		51	2．47E105	3．0UE 04	0.0	0.0	
75	\＄	1．45E104	2．17E103	7．03Et01	7．SOE 104		51	2．46E103	3．7SE10A	1．20E103	1．63E＋06	2
70	3	1．26E104	1． 68 E103	6．03E： 0 ？？	F．14E105		51	2．15L105	2．02E10A	1．02E104	6．73E1OS	0
65	3	1．02E104	1．0才1：103	1．2AE103	1．40E106		S1	1．73F105	1．77E10A	2．0DE 01	2．30E＋07	0
60	3	4．525103	2． 3 \％E10\％	2．0．3F－103	I． 3 SE106		\＄1	7．67E10才	3．74E103	3．4FEIO4	$6.39 E 107$	0
55^{5}	3	0.0	0.0	2．26E103	5.0195106		51	0.0	0.0	3，05E： 104	$1.00 E+08$	0
11 W	3	3．115103	2．28E102．	2．0AE 103	$5.179 E+06$		51	5．att104	S．ASE 103	3．4AE104	2．OOEIOO	
HIth VIt．HIIHF												
1 ll	1	1． 1 DEEIOA	2． 18 C103	0.0	0.0		27	3．995105	6．25E109	0.0	0.0	
75	1	1．JBET04	2.16 El03	0.0	0.0		27	3．99E105	6．25E104	0.0	0.0	1
70	1	19．67E103	1.33 E 103	0.295102	4．59E105		97	2．136E1O5	3．05E 104	2，40E104	1．33E107	0
65	1	7．7AE103	П．37E102	1，325103	0． 3050.105		29	2．2AE105	2．43E104	3．02E104	2．11E107	0
60	1	3．215603	1．HIEIO2	1．77E103	2，131：106		29	$9.305+04$	5．25： 103	5．73E104	6．1DE＋07	0
5	1	0.0	0.0	$2.16 E 103$	2． 1335106		29	0.0	0.0	$6.25 E 101$	0．21E 07	0
HW	1	2．40E＋03	1．22E102	2．g3E103	T．त3E106		27	6．96：104	3．54E10．7	$5.70 \mathrm{EFO4}$	0．21E\07	
I．OW UIII．Ft．nt												
IIL．	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	
76	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
70	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
64	0	0.0	0.0	0.0	0.0		176	0.0	0.0	0.0	0.0	0
60	0	0.0	0.0	6．0	0.0		176	0.0	0.0	0.0	0.0	0
5\％	0	0.0	0.0	0.0	0.0 ，		476	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		476	0.0	0,0	0.0	0.0	
HEIISH VOL，FLAT												
D．	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	
75	0	0.0	0.0	0.0	0.0		346	0,0	0.0	0.0	10.0	0
70	0	0.0	0.0	0.0	0.0		146	0.0	0.0	0.0	0.0	0
6\％	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
－ 10	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
55	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		316	0.0	0.0	6．0	0,0	

	gnmile				PRITIFCSEO							
	－Y	P1：	1：111	115：11	cos：	1	$Y \mathrm{~J}$	PE	E．N1	UENI	cost	－IC
L．ITH U04．HIStI												
11.	1	$5.771 .10: 5$	5.285102	0.0	0.0		11	$2.631: 105$	2．30E104	0.0	0.0	
75	1	6．77E103	5.225102	0.0	0,0		11	2，仿库05	2.30 F ＋04	0.0	0.0	1
70	1	5．97E103	5，120：102	9，ISE100	5．A0F104		11	2．63t：105	2，2t5lot	A．20E102	2.305106	0
45	1	5.00510 .5	3．77E102	1，441： 102	2．16E10S		11	2．20E．105	1．6AE101	6．35E103	1．001：107	0
f0	1	1．761510．3	7．15E101	1．508102	6．72F105		44	7．76E104	$3.15 E 103$	1．9EE104	$3.05 E 107$	0
：9\％	1	0.0	0.0	5．23E102	1．15R．106		44	0.0	0.0	2.30 ESOA	5.08 E 107	0
HW	1	6，10E10\％	1．21E101	5．10\％+02			11	2． 675104	5，33E102	2． $24 E 104$	5.085107	
HEDIIH UDI．HUIN												
H．	3	1．18E101	$2.26 E 103$	0.0	0.0		51	2．47E105	3．0UE 04	0.0	0.0	
75	\＄	1．45E104	2．17E103	7．03Et01	7．SOE 104		51	2．46E103	3．7SE10A	1．20E103	1．63E＋06	2
70	3	1．26E104	1． 68 E103	6．03E： 0 ？？	F．14E105		51	2．15L105	2．02E10A	1．02E104	6．73E1OS	0
65	3	1．02E104	1．0才1：103	1．2AE103	1．40E106		S1	1．73F105	1．77E10A	2．0DE 01	2．30E＋07	0
60	3	4．525103	2． 3 \％E10\％	2．0．3F－103	I． 3 SE106		\＄1	7．67E10才	3．74E103	3．4FEIO4	$6.39 E 107$	0
55^{5}	3	0.0	0.0	2．26E103	5.0195106		51	0.0	0.0	3，05E： 104	$1.00 E+08$	0
11 W	3	3．115103	2．28E102．	2．0AE 103	$5.179 E+06$		51	5．att104	S．ASE 103	3．4AE104	2．OOEIOO	
HIth VIt．HIIHF												
1 ll	1	1． 1 DEEIOA	2． 18 C103	0.0	0.0		27	3．995105	6．25E109	0.0	0.0	
75	1	1．JBET04	2.16 El03	0.0	0.0		27	3．99E105	6．25E104	0.0	0.0	1
70	1	19．67E103	1.33 E 103	0.295102	4．59E105		97	2．136E1O5	3．05E 104	2，40E104	1．33E107	0
65	1	7．7AE103	П．37E102	1，325103	0． 3050.105		29	2．2AE105	2．43E104	3．02E104	2．11E107	0
60	1	3．215603	1．HIEIO2	1．77E103	2，131：106		29	$9.305+04$	5．25： 103	5．73E104	6．1DE＋07	0
5	1	0.0	0.0	$2.16 E 103$	2． 1335106		29	0.0	0.0	$6.25 E 101$	0．21E 07	0
HW	1	2．40E＋03	1．22E102	2．g3E103	T．त3E106		27	6．96：104	3．54E10．7	$5.70 \mathrm{EFO4}$	0．21E\07	
I．OW UIII．Ft．nt												
IIL．	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	
76	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
70	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
64	0	0.0	0.0	0.0	0.0		176	0.0	0.0	0.0	0.0	0
60	0	0.0	0.0	6．0	0.0		176	0.0	0.0	0.0	0.0	0
5\％	0	0.0	0.0	0.0	0.0 ，		476	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		476	0.0	0,0	0.0	0.0	
HEIISH VOL，FLAT												
D．	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	
75	0	0.0	0.0	0.0	0.0		346	0,0	0.0	0.0	10.0	0
70	0	0.0	0.0	0.0	0.0		146	0.0	0.0	0.0	0.0	0
6\％	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
－ 10	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
55	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		316	0.0	0.0	6．0	0,0	

	gnmile				PRITIFCSEO							
	－Y	P1：	1：111	115：11	cos：	1	$Y \mathrm{~J}$	PE	E．N1	UENI	cost	－IC
L．ITH U04．HIStI												
11.	1	$5.771 .10: 5$	5.285102	0.0	0.0		11	$2.631: 105$	2．30E104	0.0	0.0	
75	1	6．77E103	5.225102	0.0	0,0		11	2，仿库05	2.30 F ＋04	0.0	0.0	1
70	1	5．97E103	5，120：102	9，ISE100	5．A0F104		11	2．63t：105	2，2t5lot	A．20E102	2.305106	0
45	1	5.00510 .5	3．77E102	1，441： 102	2．16E10S		11	2．20E．105	1．6AE101	6．35E103	1．001：107	0
f0	1	1．761510．3	7．15E101	1．508102	6．72F105		44	7．76E104	$3.15 E 103$	1．9EE104	$3.05 E 107$	0
：9\％	1	0.0	0.0	5．23E102	1．15R．106		44	0.0	0.0	2.30 ESOA	5.08 E 107	0
HW	1	6，10E10\％	1．21E101	5．10\％+02			11	2． 675104	5，33E102	2． $24 E 104$	5.085107	
HEDIIH UDI．HUIN												
H．	3	1．18E101	$2.26 E 103$	0.0	0.0		51	2．47E105	3．0UE 04	0.0	0.0	
75	\＄	1．45E104	2．17E103	7．03Et01	7．SOE 104		51	2．46E103	3．7SE10A	1．20E103	1．63E＋06	2
70	3	1．26E104	1． 68 E103	6．03E： 0 ？？	F．14E105		51	2．15L105	2．02E10A	1．02E104	6．73E1OS	0
65	3	1．02E104	1．0才1：103	1．2AE103	1．40E106		S1	1．73F105	1．77E10A	2．0DE 01	2．30E＋07	0
60	3	4．525103	2． 3 \％E10\％	2．0．3F－103	I． 3 SE106		\＄1	7．67E10才	3．74E103	3．4FEIO4	$6.39 E 107$	0
55^{5}	3	0.0	0.0	2．26E103	5.0195106		51	0.0	0.0	3，05E： 104	$1.00 E+08$	0
11 W	3	3．115103	2．28E102．	2．0AE 103	$5.179 E+06$		51	5．att104	S．ASE 103	3．4AE104	2．OOEIOO	
HIth VIt．HIIHF												
1 ll	1	1． 1 DEEIOA	2． 18 C103	0.0	0.0		27	3．995105	6．25E109	0.0	0.0	
75	1	1．JBET04	2.16 El03	0.0	0.0		27	3．99E105	6．25E104	0.0	0.0	1
70	1	19．67E103	1.33 E 103	0.295102	4．59E105		97	2．136E1O5	3．05E 104	2，40E104	1．33E107	0
65	1	7．7AE103	П．37E102	1，325103	0． 3050.105		29	2．2AE105	2．43E104	3．02E104	2．11E107	0
60	1	3．215603	1．HIEIO2	1．77E103	2，131：106		29	$9.305+04$	5．25： 103	5．73E104	6．1DE＋07	0
5	1	0.0	0.0	$2.16 E 103$	2． 1335106		29	0.0	0.0	$6.25 E 101$	0．21E 07	0
HW	1	2．40E＋03	1．22E102	2．g3E103	T．त3E106		27	6．96：104	3．54E10．7	$5.70 \mathrm{EFO4}$	0．21E\07	
I．OW UIII．Ft．nt												
IIL．	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	
76	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
70	0	0.0	0.0	0.0	0.0		476	0.0	0.0	0.0	0.0	0
64	0	0.0	0.0	0.0	0.0		176	0.0	0.0	0.0	0.0	0
60	0	0.0	0.0	6．0	0.0		176	0.0	0.0	0.0	0.0	0
5\％	0	0.0	0.0	0.0	0.0 ，		476	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		476	0.0	0,0	0.0	0.0	
HEIISH VOL，FLAT												
D．	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	
75	0	0.0	0.0	0.0	0.0		346	0,0	0.0	0.0	10.0	0
70	0	0.0	0.0	0.0	0.0		146	0.0	0.0	0.0	0.0	0
6\％	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
－ 10	0	0.0	0.0	0.0	0.0		346	0.0	0.0	0.0	0.0	0
55	0	0.0	0.0	0.0	0.0		316	0.0	0.0	0.0	0.0	0
HW	0	0.0	0.0	0.0	0.0		316	0.0	0.0	6．0	0,0	

IIIGH UHI. FIAT

111	0	0.0
75	0	0.0
70	0	0.0
65	0	0.0
60	0	0.0
WS	0	0.0
HW	0	0.0

0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

130	0.0
130	0.0
130	0.0
130	0.0
130	0.0
130	0.0
130	0.0

0.0	0.0	0.0.
0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0
0.0	0.0	0.0

JMIISTREIAL.

112	0	0.0
75	0	0.0
70	0	0.0
65	0	0.0
60	0	0.0
$\$ 5$	0	0.0
HW	0	0.0

0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0

1311	'0,0
H311	0.0
日3:	0.0
0331	0.0
6311	0.0
O36	0,0
133	0.0

0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0

0.0	
0.0	0
0.0	0
0.0	0
0.0	0
0.0	0

GHAT.L. IHDIIGTRINI.

14.	0	0.0
75	0	0.0
70	0	0.0
65	0	0.0
60	0	0.0
75	0	0.0
$H W$	0	0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0	1777	0.0
0.0	1779	0.0
0.0	1779	0.0
0.0	1777	0.0
0.0	1779	0.0
0.0	1779	0.0
0.0	1777	0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

IHAMF YAROG-OALL VIIUHES

JIL	3	$3.44 E 104$
75	5	$3.42 E 104$
70	5	$2.115 E 104$
65	5	$3.79 E 104$
60	5	$9.47 E 103$
55	5	0.0
$1 W$	$\mathbf{3}$	6.435103

9.941:103	0.0	0.0
4,1076103	7.03E101	?.605104
3.5OE103	1.14E103	1.031:106
2. 26 Et03	2.69E103	2.471206
4.85E102	1.165:+03	6. 513E:106
0.0	4.94t:103	9.1172.106
3.80510%	4. ©0:103	9.675106

12

124 O.4DEIOS
24 7.0AE105
H 4 -6日E105 5
$.23 E 105$
$.21 E 105$
0.0
$1.74 E+0.3$
0.0 $1.63 E+01$
$.30 E 101$ 3.57E104
$6.665: 101$
C. J®E104
2. S5E 107 6. 1AE 107
 1.11E105

1. 6JE + OD
2. AEE OD

1
0
0
0
0
rlat yardeg-nlit vuluhfes

111	0	0.0
75	0	0.0
70	0	0.0
65	0	0.0
60	0	0.0
55	0	0.0
$H W$	0	0.0

0.0	0.0	0.0	752	0.0	0.0	0.0	0.0	0
0.0	0.0	0.0	752	0.0	0.0	0.0	0.0	0
0.0	0.0	0.0	752	0.0	0.0	0.0	0.0	0
0.0	0.0	0.0	752	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	752	0.0	0.0	0.0	0.0	
0.0	0.0	0.0	752	0.0	0.0	0.0	0.0	0
0.0	0.0	0.0	952	0.0	0.0	0.0	0.0	0

LIF IIAHLS FOIS EAGEL.tHF:

55-50	58-61	61-64	61-67	67-70	70.73	73-76	76-77	-	82

1.17W U(I). IItHI

HETITH VOL HHHF

L.(IW VOL FI.NT

DNA										
PE	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0
Finl	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	0.0	0.0
PROJSETEU										
re:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E.N1	0.0	0,0	0.0	0,0	0,0	0.0	0.0	0.0	0.0	0.0

HEN:UH VOL FLAT

IHHEAREIA.

EABAPLEE										
If:	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
EHI	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Pronecitct										
r't:	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0
Find	0, 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

FIIAIS. INHIIITRIAI.
GIAPLE.

Here are brief descriptions on several often used WYLBUR commands. For more detail on these and other commands, the reader is referred to "WCC WYLBUR Guide."

SET TERSE

WYLBUR prompts the user by printing "COMMAND?". The standard procedure is to abbreviate the prompt to a "?" by issuing the command:

COMMAND? SET TERSE(CR)
?

CLR TEXT

When you \log on to WYLBUR, you are given a workspace. You can write on this workspace and edit what you have written. If you want to wipe this workspace out and start with a clean one, issue this command to clear the text:
? CLR TEXT(CR)

USE

To bring an existing file named 'filename' into an empty workspace, type:
? USE 'filename'(CR)
o bring an existing file into a non-empty workspace, type:
? USE 'filename' CLR(CR)

Warning: CLR clears the existing workspace. If you don't want to wipe out your existing workspace, save it with a SAVE command first before issuing the CLR.

File Naming Convention in WCC

A file in WCC is stored as CN.EPAIII.AAAA.'filename' where

EPAIII is your userid
AAAA is your account code
'filename' is the name of your file of length 1 to 8 characters long. Each character can be an alphanumeric character or a national character (\$, (©). The first character of the file has to be either an alphabetic character or a national character.

To access a file from another user's account on WYLBUR, a '\$' character has to be added to the full filename, e.g., \$CN.EPABRM. S2KC.RM8ON3, to let WYLBUR know that this file 'CN.EPABRM.S2KC.RMBON3' does not exist on your account.

If you have a WYLIB, you can refer to your files stored inside the WYLIB by @'filename'. The '@' character tells WYLBUR that the filename which follows is in your WYLIB.

To access a file in another user's WYLIB, type USE \$CN.EPAIII.AAAA.WYLIB('filename').

The SAVE command saves your workspace by storing it into a file to be named by you. There are two ways of storing your file, as a member of your WYLIB (if it exists)
? SAVE @'filename'(CR)

The 'e' character indicates you want to save 'filename' into your WYLIB.

Or you can save the file as a sequential data set:
? SAVE 'filename' ON 'volume' 'format'(CR)
where 'filename' is the name of the file
'volume' is the disk pack you want to store the file on (usually one of the USER packs).
'format' is the format the file is to be stored under, i.e., CARD, EDIT, DEFAULT, etc.

If you already have a file named 'filename', WYLBUR will ask you whether you want to replace that file. If you do, type YES and WYLBUR will replace the old file with the new file. If you type in anything other than YES, WYLBUR will take no action. Your workspace will not be saved.

Warning: WYLBUR does not keep backup copies of your files (except for the daily backup tape runs). If you deleted your file accidentally, you would not be able to retrieve it.

If you do want to replace your file, you can save WYLBUR the trouble of prompting you by the REPLACE option:

? SAVE 'filename' 'format' REP(CR)

COLLECT

The COLLECT command allows you to write onto your workspace.
? $\mathrm{C}(\mathrm{CR})$

1. ?

You can start from a certain line number by using
? C 'line number'(CR)

To exit from CoLLECT mode, type (BREAK) to the "?" prompt.

LIST

LIST prints out the contents of your workspace on your terminal,

3 L(CR)
To LIST all instances where 'string' occurs, use
? L'string'(CR)
where 'string' is a character string enclosed in single quotes, for example,
? $\mathrm{L}^{\prime} \mathrm{BOOK}^{\prime}(\mathrm{CR})$
will list all occurrences of the character string ' $B O O K$ ' in

DELETE

DELETE eliminates lines from your workspace. Typing
? DEL 'line'(CR)
will delete the line numbered 'line' from your workspace.

SCRATCH

SCRATCH deletes an unwanted file on the system.
? SCR 'filename'(CR)
will delete 'filename' from the system.

Warning: Once you scratch your file, it cannot be replaced unless a previous version of 'filename' was saved on the backup tapes. In that case, you can restore 'filename' to its latest status as of the most current backup tape.

CHANGE

The CHANGE command allows the user to substitute a string of characters (inside single quotes) by another string of characters (inside single quotes) as follows:
? CBA 'string 1' TO 'string 2' IN 'linerange'(CR)

This operation changes all occurrences of 'string 1 ' in the line range 'linerange' to 'string 2'.

Warning: WYLBUR will change everything that contains 'string l^{\prime} to 'string 2 '. So if you are not sure whether 'string 1' occurs in some other places you don't know about, use "LIST 'string 1'" to find all occurrences of 'string 1 ' before you use "CHANGE".

EDIT

The EDIT command allows the user to edit a line that needs to be corrected. When you issue the EDIT command
? EDIT 'line'(CR)

WYLBUR will print out 'line' and prompt for edits.

Type in any of the following characters to make the line right. You can keep doing it until you are satisfied with the contents of the line. Then on the final prompt from WYLBUR, typing a (CR) will put the changes in the line. If you type a (BREAK) before you type the final (CR) the line will not be altered.

Special edit characters:

Character Function
\wedge replace the character above with a blank. Note: this character varies on different terminals.
< delete the character above and close the gap.
$>\quad$ insert a blank in front of the character above.
"text" insert the text inside the double quotes in front of the character above the first double quote.
! Delete all characters following and including the character above.

Simply typing non-blank characters under the line to be edited will replace the characters above the non-blank characters by the non-blank characters.

After you type in your corrections, hit (CR), WYLBUR will print the edited line and ask for more edits. If you want to continue the edit, continue the previous operation. If not, type (CR) without typing in any other character will exit from EDIT mode.

LOGOFF

This command logs you off the system.
? LOGOFE(CR)
WYLBUR will prompt
CLEAR OK?

If you type YES(CR) your workspace will be wiped out and you will be logged off the system. Typing a (CR) will save the workspace and \log you off the sysem. Any other reply will abort the command. A quick way to dispense with the prompt is:

3 LOGOFF CLR(CR)

This clears the workspace and logs you off the system.

Figure 3 illustrates some of the commands mentioned above.

Figure 7. Example use of some commands
INUALII SYSTEM
-
INVALIII SYSTEM
WYL
SEAIIY TO WCC ON ECZ
ILLEGAL TEFMINAL TYFE
MONEL 37/38 TELETYFE

```
WYLRUK SYSTEM AT COMNET FORT 60 MONLIAY 10/06/80 4:43:53 F.M.
09/23/80: SCHEIULLE OF WCC MIGRATION TO NCC-IEM - SEE NEWS ALERT
10106'日O: WCC TO BE UANAUAIL. FOF COLUMEUS [IAY HOLIDAY - SEE NEWS ALERTS
USEFID ? EFABAM
ACCOUNT P AOME
FASSWORII? GBMAEADA
SPECIFY GLOBAL FORMAT FDF SAVE COMMANLIS
KEFLLY - IEFAULT, EIIIT, TSO, CAFIN, OF PRINNT
FORMAT? CAELD
"LOGON" NOT FOUNI IN "WYLIE" ON USERE8
COMMANLI ? SET TEFISE
? USE $FLUELIC.NEWS(ALERTI2)
? L UNN
*************** N E W S A L. E FT T 10/06/80 *****************
```

The wCC will be unavailable from 2300 Saturdas eveniris
11 Det. 1980 unitil 7 A.M. Tuesdas 14 Det. 1980 . This ciosins
because of the Columbus flas Holiday on Moriday 13 Oct. 1980.
If there are any froblens please contact User Suffort at
(202) 488-5900 or (800) 424-9067.
? USE \$CN, EFAEKM.S2KC. FMEON2 CLF
$?$
1. COMMON/E1/LIE, IINMOV, LINFIX,ATTINI,ALENG,WINTH,IWALL
COMMON/B2/ATTM (10), ATTF (10), $\operatorname{GMEN}(7,10), \operatorname{SMEQ}(7,10), \operatorname{SMMAX}(7,10)$,
$2 \operatorname{SFDN}(7,10), \operatorname{SFEQ}(7,10), \operatorname{SFMAX}(7,10)$, NM MU, NFIX
CamM...
?. CLR TEXT
? C
1. ? TEST FILE

3. ? AAAAAAAAAAAEEEHEREEEFBCCCCCCCCCCCCCC
4. $?$ AAABECCINILEEE
5. ? ***
? SAVE TEST
FORMAT FOR SAVE? CARII
VOL UME? USERBO
"TEST" SAUEA ON USEF8O
? EDI 2

EDITS ? 2 ***
EnITS ? 'S*

EDITS ?

EIITS ? |COMMANI.!
2. THIS IS A TEST FILE TO ILLUSTRATE THE EIIIT COMMANI.

```
        3. AAAAAAMAAAAEEGEEEEGEEECCCCCCCCCCCCCC
        4. AAAEBCCIILIEEE
    ? CHA 'AAA' TO '*'
        3. ***AAEEFBREEFEFECCCCCCCCCCCCCC
        *EBCCIDIIEEE
        4. 'AB'*EECCDD
    3. ***A&EREEBEEAERCCCCCCCCCCCCCC
    ? CHA 'EC' TO '%''
        3. ***A&BBBEEEEEEF%*CCCCCCCCCLCCC
        4. *E%`CNDDEEE
    ? L
        1. TEST FILE
        2. THIS IS A TEST FILE TO ILLUSTFATE THE EDIT COMMANI.
        3. ***A&EFBEBEEBEF%` CCCCCCCCCCCCC
        4. *E% CDLLIEEE
    ? IEL 3
    ? L
        1.. TEST FILE
        2. THIS IS A TEST FILE TO ILLUSTRATE THE EDIT COMmANH.
        4. *E%'CIDIEEE
    ? IEL 4
    ?L
        1. TEST FILE
        2. THIS IS A TEST FILE TO ILLUSTFATE THE EIIT COMMANII.
    ? SAvE
    OFEFANI MISSING.
    ? SAUE TEST
    FORMAT FOR SAVE? CARI
    "TEST" ALREADY EXISTS ON USERBO
    REFLACE? YES
    RTEST' REPLACEII ON USERBO
    SCR TEST
    'TEST' SCRATCHED ON USERBO
    ? LOGOFF
    CLEAR OK? YES
    END OF SESSION MONDAY 10/06/80 4:52:31 F.M.
    EF'ALAM/S2KC OFF WYLRUR 10/06/80 AT 16:52:30, 0.86 WUU
    0.14 CONNECT HRS., 0:00.18 TCB, O FAGE-SECONDS
    EXCF'S: 27 DA, O MT, }72\mathrm{ TEFM, O OTHEF, }99\mathrm{ TOTAL
    CHARGES: $0.00 CONNEET, $0.48 WUU, $0.48 TOTAL
```


INTENTIONALLY LEFT BLANK

DIAGNOSTIC AND ERROR RECOVERY

As far as is known, the program RM80N5 is free of bugs. If errors occur in the run, the cause is most likely in the input. In the following, we discuss some possible sources of error and how to deal with them.

The first type of error is system error. System errors usually occur when the job card is improperly set. When this type of error occurs, there is usually something like "JOB ABENDED, $C C=x x x x^{n}$ printed out in the accounting information boxes in the first few pages. "xxx" is the abend code. Some of the more usual codes are:

S106: the memory allocated is insufficient. RYNEM can be run on the default amount of core, which is 250 K . But if an 5106 occurs, try increasing the core requested to 300 K or more in the JOB card by specifying REGION $=300 \mathrm{R}$.

S122: the estimated number of lines is exceeded. This can occur when you run RYNEM with the full database but did not change the estimated number of lines to 40,000. The remedy is to change the estimate as described in section 3.2 .

S322: the job ran out of computer time. Usually, 1 minute of CPU time is sufficient to run RYNEM, even with the full database. You have probably neglected to put in TIME $=1$ in the $J O B$ card. The default time limit is 30 seconds. If you have set TIME $=1$ and still get an 5322 , try setting a higher time limit.

Sometimes you may get a response of "JCL error" if you mistyped the JCL cards. When that occurs, sheck your JCL cards with the instructions given in section 3.2 .

The second kind of error that can occur is run-time errors. Enumerating them is beyond the scope of the manual. Suffice it to say that they are caused by improperly typed-in data cards.

Some commonly encountered errors are:

divide check:	a number is being divided by zero or a very small number.
overflow:	a number larger than can be accommodated by the computer is obtained by the previous operation. This can occur when
the noise level input is too large.	

It is impossible to list all the possible sources of errors that can occur. The only advice that can be given is to check, double-check, and triple-check the input data before you run the program. Make sure everything conforms to the format as given in section 4.1. Make sure that the fields for each variable are correct. The integer variables have to be right-justified. Each card contains just the right number of items, not more and not less. There are not to be any blank cards between the data. .

If all the directions given in section 4.2 are followed to the letter, the run should be successful.

[^0]: IIL

